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A B S T R A C T

Conventional video anomaly detection methods, which predominantly rely on models trained in Euclidean space, 
are inherently limited in their ability to capture the complex, nonlinear dynamics in video data. This paper 
proposes a method employing two-stream autoencoder to distinguish and learn salient features in both Euclidean 
and constant curvature manifold (CCM) spaces. One autoencoder encodes and reconstructs latent vectors in 
Euclidean space to capture spatial correlations effectively and store these representations in a memory network. 
The other decoder processes latent vectors in non-Euclidean space of CCM to focus on learning temporally 
coherent features with semantic hierarchical relationships, which are also stored in the memory network. The 
proposed model leverages two-stream autoencoder to independently learn spatial and temporal features, inte
grating the reconstruction error maps from the autoencoders to enhance its ability to distinguish between normal 
and abnormal patterns. Experimental results demonstrate the model’s superior detection performance against the 
conventional methods, achieving AUC scores of 99.3 %, 92.8 %, and 80.5 % on the UCSD Ped2, CUHK Avenue, 
and ShanghaiTech Campus anomaly detection datasets, respectively.

1. Introduction

Detecting anomalies is essential for a wide range of applications, 
such as public safety [1–3], cyber security [4] and industrial automation 
[5–7]. In particular, video anomaly detection (VAD) has become 
increasingly important as it allows systems to monitor and analyze 
real-time video content to distinguish between normal behaviors and 
abnormal occurrences. This capability is critical in dynamic environ
ments where immediate identification of irregular events can prevent 
potential risks or failures. However, it faces significant challenges to 
implement robust video anomaly detection systems. One primary issue 
is the imbalance between normal and abnormal data with rare anoma
lous events, making it difficult to obtain a substantial amount of 
abnormal samples [8,9]. This scarcity limits the viability of supervised 
learning approaches. Moreover, unlike static images, video data exhibit 
temporal characteristics with complex inter-frame dependencies, such 
as motion patterns, object interactions and contextual shifts [10,11]. 
These nonlinear features complicate the detection, as models must grasp 
both spatial details within individual frames and dynamic changes 
across sequences.

To tackle these challenges, unsupervised learning approaches have 

been extensively pursued [9,10]. They allow models to learn inherent 
features from unlabeled data and identify whether new observations 
deviate from learned norms. Despite their potential, many current un
supervised learning techniques are confined to Euclidean space, which 
inadequately captures the intricate and nonlinear properties of video 
data. Addressing this limitation requires methods capable of effectively 
capturing the nonlinear complexities in video sequences [11]. Since 
anomalies often exhibit nonlinear characteristics, learning in a constant 
curvature manifold (CCM) effectively captures the intrinsic geometric 
properties of data [12,13]. By mapping high-dimensional complex re
lationships onto a lower-dimensional curved surface, CCM preserves the 
underlying nonlinear patterns that are difficult to represent in Euclidean 
space [14–16]. This approach naturally models the data distribution 
through curvature, enabling a concise and accurate representation of the 
dynamic and nonlinear features inherent in video sequences [11,17]. As 
a result, it significantly enhances the detection of anomalies that display 
such complex behaviors. Thus, leveraging learning in CCM is crucial for 
a deeper understanding of these properties and for improving the ac
curacy of anomaly detection.

In this paper, we propose a two-stream autoencoder-based method 
that integrates learning in CCM with learning in traditional Euclidean 
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space to enhance VAD performance. The autoencoder in Euclidean space 
represents local spatial features using a memory network that stores 
normal patterns and spatially similar representations. The CCM part 
captures the nonlinear temporal dynamics of video data, forming a hi
erarchical representation of temporal features. The CCM memory 
network further exploits the exponentially increasing distance measure 
from the origin in the CCM space, effectively representing hierarchical 
nonlinear temporal patterns [18,19]. By leveraging the two geometrical 
perspectives, the proposed method overcomes the limitations of con
ventional methods and detects complex and subtle anomalies in video 
sequence effectively [11,20]. It is verified with the popular benchmark 
datasets such as UCSD Ped2, CUHK Avenue, and ShanghaiTech Campus. 
A comparative study is also conducted with autoencoder-based 
methods, which are widely used for unsupervised VAD [1,2,9].

Our main contributions are as follows: 

• We propose a novel model for VAD that leverages the Euclidean and 
CCM spaces to amplify the reconstruction error of anomaly.

• Evaluation on the three benchmark datasets demonstrates that the 
proposed method outperforms over 15 baseline methods, validating 
its effectiveness in improving VAD performance.

The organization of this paper is as follows: Section 2 provides a 
review of relevant research on VAD, and Section 3 presents the archi
tecture and details of the proposed method. The experimental results in 
Section 4 demonstrate the effectiveness of the proposed method, and 
Section 5 concludes with a summary of findings and potential directions 
for future research.

2. Related works

Table 1 summarizes the relevant works on VAD. In the early stages of 
deep learning, VAD methods primarily relied on hand-crafted features, 
such as histograms of oriented gradients (HOG) and histograms of op
tical flows (HOF), to extract spatial and motion insights. Techniques like 
AE-Conv2d and Unmasking [21] employed these features to train clas
sifiers for distinguishing normal and abnormal events. However, such 
methods suffered from computational complexity and limited scalabil
ity, particularly when processing large datasets.

Recent advancements in deep neural networks have significantly 
improved VAD by leveraging reconstruction- and prediction-based 
paradigms [2,22,23]. Reconstruction-based methods, such as MNAD 
[3] and MAAM [23], utilize memory networks to learn normal patterns 
and amplify reconstruction errors for anomalies. Prediction-based ap
proaches focus on spatiotemporal representation learning to anticipate 
future frames, assuming anomalies will exhibit higher prediction errors. 
For example, Frame-Pred [24] uses U-Net-based architectures combined 
with optical flow to ensure temporal consistency, while FastAno++ [22] 
improves anomaly detection by enhancing feature separation with 
anomaly distance learning and adaptively controlling skip connections 
through context-aware skip connection, facilitating real-time inference.

On the other hand, the methods incorporating skip connections were 
proposed to minimize reconstruction errors caused by the diversity of 
normal patterns, maintaining high sensitivity to abnormal patterns [9]. 
Furthermore, some methods integrate pre-trained FlowNet models to 
utilize optical flow for extracting more precise temporal feature to 
improve detection performance [9,23]. These methods contribute to 
more accurate anomaly detection by capturing temporal consistency in 
video sequences [25]. Meanwhile, appearance-motion memory net
works capture the coherence between appearance and motion in video 
sequences, effectively storing normal spatiotemporal patterns and 
accurately detecting abnormal motions [26].

Liu et al. [27] categorized VAD methods into generalized frame
works, highlighting the progression from unsupervised to more 
comprehensive paradigms, such as weakly-supervised (WAED) and 
fully-unsupervised (FVAD). These approaches aim to generalize across Ta
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complex scenarios by combining local and global representations. 
Building on this, Zhao et al. [28] introduced a local-global normality 
framework that balances short-term spatiotemporal patterns (local 
normality) with long-term prototype patterns (global normality), 
enhancing adaptability to both simple and complex scenes.

Liu et al. [29] proposed a causality-inspired method to address the 
limitations of traditional VAD methods in capturing spatiotemporal 
dependencies. By enforcing representation consistency between 
appearance and motion, this method leverages causal relationships to 
improve normality learning and robustness to diverse anomalies.

However, the memory-based methods alone may not sufficiently 
maximize reconstruction errors for anomalies and often require addi
tional data for training auxiliary networks [1,2]. They also face limita
tions in effectively capturing the complex temporal dynamics of video 
data [3,26]. In order to address these challenges, it is crucial to employ 
methods capable of capturing nonlinear features effectively, such as 
those leveraging non-Euclidean spaces [21,23,25]. In this paper, we 
propose a method that learns spatial features through training in 
Euclidean space and captures temporal relationships through training in 
non-Euclidean space of CCM.

3. The proposed method

Fig. 1 shows the overall architecture of the proposed method for 
detecting anomalies in video sequence. The method receives consecutive 
frames xt− n:t− 1 into a shared encoder Es, which learns features in both 
Euclidean and CCM spaces, converting them into feature vectors [21,23,
36]. These feature vectors are then separately processed: Learning in 
Euclidean space is conducted through a memory network Me and a 
decoder De, while learning in CCM space is facilitated by a memory 
network Mc and a decoder Dc [2,23]. The feature vectors produced by 
the shared encoder Es are projected onto a negative curvature manifold 
using exponential mapping expmap [15,37].

Within the memory networks, similarity measures in each space 
capture normal spatial and temporal patterns, respectively [3,21]. The 
decoder outputs in Euclidean and CCM spaces, x̂e

t and x̂c
t are compared 

against the ground truth xt, and their element-wise multiplication am
plifies the reconstruction errors related to anomalies while reducing 
those for normal data. This amplification occurs because normal data 
produce consistent reconstructions in both spaces, resulting in minimal 
discrepancies when multiplied. In contrast, anomalies exhibit significant 
deviations in each space, and their discrepancies, when multiplied, are 
further magnified, effectively highlighting abnormal behaviors and 
enhancing detection sensitivity [1,2].

3.1. Learning in euclidean space

For learning in Euclidean space, a 2D convolutional structure 
comprising Es, De, and a memory network Me of size m × d is employed 
[27]. The shared encoder Es takes consecutive frames xt− n:t− 1 from the 
video as input and extracts a latent vector fs. The size of the latent vector 
fs is w, h , and d , representing the width, height, and dimension of the 
feature map. Subsequently, the latent vector fS is normalized to form fe 
to facilitate the calculation of cosine similarity [2]. The normalized 
vector fe is then input into the memory network Me to measure its 
similarity to the stored memory items using cosine similarity [2,23].

The similarity measurement involves reshaping fe into a matrix of 
size (w × k , d ), allowing for the computation of similarities between 
each local feature in the feature map and Me. Matrix multiplication of 
the reshaped fe and Me yields a similarity matrix Se of size (w × k , m). 
This similarity matrix Se is used to compute a weighted sum with Me 
through matrix multiplication, resulting in fem, a feature map of the same 
dimension as fe [1,2]. Cosine similarity is employed as the similarity 
metric, as shown in Eq. (1), and the operational details of the memory 
network are depicted in Fig. 2. 

Se = matmul(fe, Me). (1) 

After obtaining fem from the memory network, fem is concatenated 
with fe and passed into the decoder De, producing x̂e

t , the prediction for 
xt. The mean squared error (MSE) between xt and x̂e

t is then computed to 
quantify the discrepancy between the prediction and the ground truth. 
Eq. (2) defines the loss function utilized for the learning process in 

Fig. 1. Overview of the proposed method. The input sequence xt− n:t− 1 is encoded by the shared encoder Es to generate the latent features f c (for CCM space) and fe 
(for Euclidean space). The CCM Memory Network (Mc) learns temporal relationships by projecting features into the CCM space using the exponential map and 
computing distances for weighted sum operations. The Euclidean Memory Network (Me) learns spatial relationships by calculating similarity-based weighted sums. 
The decoders Dc and De reconstruct the inputs as x̂t

c and x̂t
e, respectively.
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Euclidean space. 

L e = MSE(De(concat(fs,matmul(Se, Me))), xt). (2) 

The Euclidean memory network Me learns and stores the spatial 
features of the normal data provided as input. This memory network 
captures common patterns of objects or entities appearing in localized 
regions with a fixed background, positioning similar features close to 
each other in the latent space [2,23]. For instance, given N different 
video sequence samples, each sample may contain different objects or 
entities in the same localized region, leading to distinct features. As 
illustrated in the left side of Fig. 3, fem comprises d feature maps of size w 

× k . The features in the first column of the first row tend to cluster in 
similar locations, and the features across the columns of the first row 
exhibit similar patterns. This method allows the model to effectively 
learn spatially similar features, enhancing its ability to detect consistent 
patterns in the video sequence [1,2,23].

3.2. Learning in CCM space

The proposed method is inspired by existing studies [11,19], which 
emphasize that non-Euclidean spaces with negative curvature are highly 
effective for learning nonlinear data structures. While Euclidean space 
provides strong visual feature representations, it has limitations in 
encoding feature dependencies, such as temporal relationships. In 
contrast, CCM space effectively characterizes feature interactions but 
lacks rich visual encoding. By leveraging both spaces, we fuse spatial 
and temporal representations to reconstruct frames, enhancing anomaly 
detection [11,16].

Building on this foundation, we utilize CCM spaces to model 
nonlinear temporal patterns and represent hierarchical relationships 
inherent in video data. Video sequences inherently exhibit nonlinear 
temporal variations, and CCM spaces provide a suitable structure to 
capture such complexities. Specifically, we calculate the relationships 
between consecutive frames using the distance metric in CCM spaces, 

Fig. 2. The process of memory network in Euclidean space; (a) The process of calculating similarity matrix Se, and (b) The process of calculating fem.

Fig. 3. Visualization of memory network operations in different spaces of the proposed method. The first two subfigures show spatial feature maps (f em) extracted 
from video frames and their distinction using a Euclidean autoencoder, which clusters features based on spatial regions. The last two subfigures illustrate temporal 
feature maps across n frames and their organization in the CCM space, where concentric circles represent hierarchical temporal layers (t1, …, tn), with features near 
the origin (t1) capturing minor variations and those farther away (tn) reflecting larger temporal changes.
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ensuring that similar frames are positioned closer together while dis
similar frames are placed farther apart. This method aligns with the 
intuitive fact that the current frame is more similar to the first subse
quent frame than to the second. Repeated learning in CCM spaces takes 
advantage of their exponentially increasing distances, enabling more 
discriminative representations compared to Euclidean spaces [13,17]. 
Furthermore, the unique properties of CCM naturally divide hierarchical 
structures, allowing the model to learn frame-to-frame relationships and 
enhance the distinction between normal and abnormal patterns.

For learning in CCM space, the architecture utilizes Es, Dc, and a 
memory network Mc with dimension m × d . The encoder Es processes 
consecutive video frames xt− n:t− 1 to generate a latent vector fs, which is 
then mapped into the CCM using exponential mapping, leveraging 
CCM’s capability to handle non-linear data distributions and capture 
complex temporal relationships [11,20]. In the CCM, which has negative 
curvature, points are restricted to a unit ball defined by: 

Pn =
{
x ∈ Rn: ‖ x‖2 <1

}
, (3) 

where ‖ x‖2 is the squared Euclidean norm, limiting points to lie within a 
unit ball. The proposed method leverages the CCM memory network to 
learn hierarchical temporal features, utilizing Eq. (4) for CCM distance 
computation. In this context, x and y represent two distinct feature 
vectors within the CCM, with x typically corresponding to a latent 
feature derived from xt− n:t− 1, and y representing another feature vector 
in the memory network. Eq. (4) computes the geodesic distance between 
x and y, a critical metric for capturing deviations that may indicate 
anomalies: 

dPn (x, y) = cosh− 1
(

1 +
2 ‖ x − y‖2

(1− ‖ x‖2)(1− ‖ y‖2)

)

. (4) 

By exploiting the CCM’s negative curvature, distances increase 
exponentially as points move further from the origin [16,19,37]. This 
property enhances the model’s sensitivity to abnormal patterns, as it 
amplifies the separation between normal and anomalous features. For 
example, temporal changes in xt− n:t− 1 that align with normal patterns 
result in smaller distances, whereas deviations from these patterns yield 
significantly larger distances.

Additionally, the hierarchical temporal structure arises naturally in 
the CCM due to the Poincaré disk’s geometric properties. As time pro
gresses, feature vectors derived from consecutive frames (xt− n:t− 1) move 
further from the origin, representing accumulated temporal changes. 
The exponential growth of distances in the CCM allows for small tem
poral variations in earlier frames to be represented near the origin, while 
more significant temporal deviations in later frames are projected 
farther outward. This property enables the CCM to effectively capture 
the hierarchical progression of temporal features, as normal patterns 
remain within concentric layers near the origin, and anomalous patterns 
deviate further outward.

The Möbius gyrovector space within the CCM enables operations like 
Möbius addition in Eq. (5), preserving the data’s geometric properties 
when projecting features onto the CCM: 

x ⊕ y :=
(1 + 2〈x, y〉+ ‖ y‖2)x + (1− ‖ x‖2)y

1 + 2〈x, y〉+ ‖ x‖2‖ y‖2 . (5) 

The exponential map expx(v) projects the latent vector fs onto the 
manifold, embedding it in the CCM space while preserving its curvature 
properties: 

expx(v) = x ⊕

⎛

⎜
⎝

tanh
(
‖v‖
2 v

)

‖ v ‖

⎞

⎟
⎠. (6) 

Conversely, the logarithmic map logx(y) maps point back to the 
tangent space, allowing the model to extract geodesic distance-related 
features effectively. The logarithmic map is defined as: 

logx(y) = 2tanh− 1
(‖ u ‖)

u
‖ u ‖

, (7) 

where u is a tangent vector representing the difference between x and y 
in the tangent space.

The hierarchical structure is further strengthened by the concentric 
organization of temporal features within the CCM. For instance, in 
Fig. 3, concentric circles represent temporal layers corresponding to 
different time step (t − n, t − n + 1, …, t − 1). Features closer to the 
origin capture earlier frames with minor temporal variations, while 
features further outward capture more significant changes in later 
frames. In Fig. 3, n represents the time dimension. The first row’s first 
column, second column, and third column represent different spatial 
regions. In the proposed method, the distance computation is performed 
on the same spatial region across n time frames (e.g., the first column of 
the first row at n = 0, n = 1, …, n = n). This is because the frames at 
n = 0 and n = 1 are visually more similar, and the difference between 
these consecutive frames is smaller compared to the frame at n = n. As a 
result, n = 0 and n = 1 are positioned closer in the space, while n = n is 
positioned further away. This structure enables the CCM to model hi
erarchical temporal dynamics effectively, ensuring that normal patterns 
cluster within specific layers while anomalous patterns deviate signifi
cantly across the manifold.

By leveraging the exponential growth of distances in CCM, the 
memory network Mc stores the semantic temporal features of normal 
data, ensuring that similar features are positioned close together while 
those representing different temporal variations are spaced further 
apart. This spatial arrangement within the CCM facilitates the accurate 
modeling of semantic temporal hierarchical features across consecutive 
frames, as illustrated in Fig. 3, where concentric circles represent 
different temporal layers within the manifold. This organization allows 
the model to capture not only the spatial but also the hierarchical 
temporal relationships of objects in video sequences, enhancing the 
ability to identify anomalies in complex scenes [2,14].

Leveraging the unique properties of CCM along with the memory 
network enables the extraction of semantic temporal hierarchical fea
tures from consecutive video frames [11,16,19]. The latent vector fC, 
which is mapped onto the CCM, is fed into the memory network Mc to 
calculate the distance between fc and Mc in the CCM [16,36]. This dis

tance is measured by reshaping fc into dimension 
(

w × h × n, d
n

)

, 

capturing the temporal features across n consecutive frames within the 
entire feature map. The reshaped fc is then multiplied by Mc using matrix 
multiplication, resulting in a similarity matrix Sc of size (wxh , n, m). 
Following this, another matrix multiplication between the similarity 
matrix Sc and the memory network Mc is conducted to compute a 
weighted sum, producing fcm, which retains the same dimension as fc 
[15,20]. The distance measuring method employed aligns with the 
distance metrics defined for CCM, as denoted in Eq. (4). This method 
effectively captures both the temporal and spatial characteristics of the 
video sequence, facilitating the accurate modeling of semantic temporal 
hierarchical features across consecutive frames.

Subsequently, the feature vector fcm derived from the memory 
network is concatenated with fc and fed into the decoder Dc. This process 
yields the prediction x̂c

t for the input xt . The mean squared error is then 
calculated between xt and x̂c

t to measure the difference between the 
predicted output and the actual target. Eq. (8) specifies the loss function 
used for training in the CCM space. 

L c = MSE(Dc(concat(fc,matmul(Sc, Mc))), xt). (8) 

The CCM memory network Mc learns and stores the semantic tem
poral features of the normal data provided as input. This memory 
network captures the temporal common patterns of objects or entities 
appearing in localized regions, ensuring that similar features are posi
tioned close to each other in the latent space [2,14]. For instance, given 
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N different video sequence samples, each sample captures the temporal 
changes of objects or entities within the same localized region across n 
consecutive frames, thereby learning the temporal characteristics. The 
fundamental operation of the CCM memory network is similar to that of 
the Euclidean memory network, except that it measures distances within 
the CCM instead of using cosine distance [19,20]. Fig. 3 illustrates an 
example of learning temporal features. The right side of the figure de
picts the latent vectors positioned within the CCM. The concentric cir
cles represent different temporal layers, illustrating how features from 
various time steps (n1, n2,…, n5) occupy specific regions within the 
manifold. Similar temporal features are located closely together within 
the CCM, while features from different time steps, representing temporal 
variations, are spaced further apart [20,31]. This spatial distribution 
within the CCM effectively captures the temporal dynamics of the video 
data and represents semantic hierarchical relationships.

By employing the CCM memory network, the model learns and stores 
both semantic hierarchical structures and temporal patterns efficiently. 
This capability enhances the model’s ability to understand and process 
complex video sequences, making it highly effective for tasks such as 
VAD and recognition [2,15,20]. By capturing the underlying semantics 
and hierarchical relationships in the data, this method provides a robust 
method for deep learning models to understand the intricate temporal 
and spatial characteristics inherent in video sequence [11,19,20].

3.3. Detecting anomaly with anomality score

To assess the degree of normality or abnormality in a video frame 
during the testing phase, we operate under the premise that queries 
extracted from a normal video frame will closely match the memory 
items, which encapsulate typical patterns of normal behavior [1,2]. We 
measure the L2 distance between each query and its nearest memory 
item using the following formula: 

D e(fe,matmul(Se, Me)) =
1
K
∑K

k

‖fk
e − (matmul(Se, Me))

k
‖2. (9) 

D c(fc,matmul(Sc, Mc)) =
1
K
∑K

k
d
(

fk
c , (matmul(Sc, Mc))

k
)
. (10) 

We utilize the memory items to implicitly evaluate the abnormality 
score by examining how well the video frame is reconstructed using 
these memory items. The assumption here is that abnormal patterns in a 
video frame will not be adequately reconstructed by the memory items. 
In line with the method detailed in [3], we compute the peak 
signal-to-noise ratio (PSNR) between the original video frame and its 
reconstructed counterpart: 

P(xt , x̂t) = 10log10
max (x̂t)

‖ xt − x̂t‖
2
2/N

, (11) 

where N is the number of pixels in the video frame. A lower PSNR value 
suggests that the frame xt is abnormal, whereas a higher PSNR indicates 
normality [2,33]. To incorporate temporal context, we compute a 
temporally smoothed PSNR using a weighted sliding window. For a 
given frame xt , the temporally weighted PSNR is defined as: 

Pweighted
t =

∑w
i=− wwi ⋅P(xt+i, x̂t+i)

∑w
i=− wwi

, (12) 

where w is the window size, wi = exp
(

− i2
2σ2

)

is the Gaussian weight for 

temporal smoothing, and P(xt+i, x̂t+i) represents the PSNR value of the 
frame xt+i.

We also compute the discrepancy between the outputs from both 
spaces and the ground truth separately. The resulting discrepancies are 
then combined using element-wise multiplication. This method am

plifies smaller errors to become even smaller and larger errors to become 
more definite, thereby enabling more robust anomaly detection [2,33]. 
Consistent with the methodology outlined in [2], each error metric in 
Eqs. (9), (10) and (11) is normalized to a [0, 1] range using min-max 
normalization [23]. The final abnormality score SA for each video 
frame is determined by combining these two metrics: 

SA = Pweighted
t

(
xt , x̂

e
t
)
⊗ Pweighted

t
(
xt , x̂

c
t
)
+ D e(fe,matmul(Se, Me))

+ D c(fc,matmul(Sc, Mc)). (13) 

To sum up, Fig. 4 shows the algorithm of the proposed method. This 
method exploits both Euclidean and CCM-based features to enhance the 
detection of anomalies by effectively capturing both spatial and tem
poral patterns in video sequence [11,26].

3.4. Synergistic integration of euclidean and CCM streams

The rationale for adopting a dual-stream architecture—spatial 
learning in Euclidean space and temporal learning in CCM space—stems 
from the observation that anomalies in video data rarely manifest in a 
single domain. Euclidean space excels at capturing local appearance and 
structural consistency within frames, making it well-suited for detecting 
spatial anomalies such as unusual objects or unexpected locations. 
Conversely, the CCM stream models nonlinear temporal variations 
across consecutive frames, allowing the system to identify behavioral 
anomalies or deviations in motion trajectories. While these components 
perform independently, their integration yields a synergistic effect in 
which spatial and temporal inconsistencies reinforce each other during 
anomaly scoring.

To illustrate this synergy, consider a scenario in which a person 
walking in a typical surveillance scene suddenly appears riding a bicy
cle. Visually, the presence of a bicycle constitutes a spatial anomaly that 
the Euclidean stream can detect. However, the abrupt change in motion 
pattern is better captured in the CCM stream, which tracks hierarchical 
temporal inconsistencies. By fusing the reconstruction errors from both 
streams via element-wise multiplication, the model amplifies the com
bined deviation, resulting in highly sensitive and discriminative anom
aly detection. This fusion enables the detection of subtle or compound 
anomalies that may go unnoticed when relying on a single modality.

Moreover, as shown in our ablation study (Table 5 in Experiments), 
the combined model consistently outperforms its single-stream coun
terparts across all benchmark datasets. Notably, the dual-stream 
approach achieves a 3~5 % improvement in AUC over Euclidean-only 
and CCM-only models, particularly excelling in the complex Shang
haiTech Campus dataset. These empirical results highlight that the 
proposed architecture is not merely beneficial but necessary. In real- 
world scenarios where anomalies exhibit multifaceted irregularities, a 
uni-modal detection scheme—whether spatial or temporal—is funda
mentally limited. The proposed dual-stream structure reflects an archi
tectural imperative to comprehensively model the complex interplay of 
appearance and dynamics inherent in video data.

4. Experiments

4.1. Dataset

We evaluate the proposed method on three pedestrian video datasets 
in Table 2: UCSD Ped2 [38], CUHK Avenue [39], and Shanghaitech 
Campus [8]. Following the standard preprocessing, all images are 
resized to 256 × 256 and normalized to values between − 1 and 1. The 
history length n is set to 4, and the memory size m is set to 10, in line 
with the frame-pred strategy. The training process spans 60 epochs for 
UCSD Ped2 and CUHK Avenue datasets, while for the Shanghaitech 
Campus dataset, training is conducted over 10 epochs. All experiments 
utilize the Adam optimizer with a learning rate of 2 × 10− 4, which is 
decayed following the CosineAnnealingLR strategy.
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Specifically, the UCSD Ped2 dataset consists of 16 video sequences 
for training and 12 sequences for testing, capturing various anomaly 
events [38]. The CUHK Avenue dataset comprises 16 training videos and 
21 testing videos that include different types of anomalous activities 
[39]. The Shanghaitech Campus dataset, which covers a broader set of 
scenarios, includes 330 videos for training and 107 videos for testing 
[8]. Evaluation of the proposed method is conducted using AUC-ROC 
and TPR-FPR metrics, adhering to the experimental protocols outlined 
in [1,2,29].

4.2. Quantitative results

Table 3 and Fig. 5 highlight the superior performance of the pro
posed method in unsupervised VAD, achieving the highest AUC scores 
across the Ped2 (99.3 %), Avenue (92.8 %), and Shanghaitech Campus 
(80.5 %) datasets. This consistent high performance underscores the 
method’s ability to effectively capture and learn temporal patterns, 
which are crucial for identifying anomalies in dynamic video scenes. The 
proposed method outperforms other competitive methods such as 
AMMC [26], CRC [29], FastAno++ [22], and HF²-VAD [40]. which 
explicitly use optical flow to model temporal features. This implies that 
the proposed method extracts spatial and temporal features more 
effectively, resulting in better anomaly detection. Its ability to gener
alize well across different datasets indicates that it not only captures the 

Fig. 4. The proposed video anomaly detection algorithm.

Table 2 
The details of video anomaly detection benchmark datasets.

Dataset Total (frames/videos) Train (frames/videos) Test (frames/videos) Anomalies

Ped2 4560/28 2550/16 2010/12 skater, biker, cart
Avenue 30,652/37 15,328/16 15,324/21 object throwing, loitering, running
Shanghaitech Campus 317,398/437 274,515/330 42,883/107 chasing, fighting, loitering, running

Table 3 
The comparison of AUC (%) scores with unsupervised VAD methods.

Task Method Dataset

Ped2 Avenue Shanghaitech 
Campus

Reconstruction MAAM [23] 97.7 90.9 71.3
MemAE [1] 94.1 83.3 71.2
ITAE [30] 99.2 88.0 76.3
StackRNN [8] 92.2 81.7 68.0
VEC [35] 97.3 90.2 74.8

Frame 
Prediction

AMMC [26] 96.6 85.6 70.3
AnoPCN [9] 96.8 86.2 73.6
CDAE [3] 96.5 86.8 73.3
CRC [29] 98.7 92.5 78.3
Dual GroupGAN 
[10]

96.6 85.5 73.1

FastAno++ [22] 98.1 87.8 75.2
FFP [24] 95.4 88.5 72.8
HF²-VAD [40] 99.3 91.1 76.2
LGC–Net [28] 97.1 89.3 73.0
MNAD [2] 97.0 88.5 70.5
MSN–Net [33] 97.6 89.4 73.4
SAF3D [41] 96.7 84.7 74.8
SAFA [34] 96.8 87.3 76.4
TransMem [42] 98.1 88.5 72.5
Unmasking [21] 82.2 80.6 68.3
VAD-CL [43] 92.2 86.2 73.8
Ours 99.3 92.8 80.5
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immediate spatial anomalies but also understands complex temporal 
dynamics, enabling robust and accurate anomaly detection across 
diverse video environments, as confirmed by the results in Table 3 and 
Fig. 5 [2,3].

Fig. 6 and 7 provide a detailed comparative analysis of the anomaly 
detection capabilities of four models: the proposed model, AMMC [26], 
HF²-VAD [40], and MNAD [2], using test videos from two benchmark 
datasets, UCSD Ped2 and CUHK Avenue. The performance is measured 
using normality scores plotted against the frame sequence, with shaded 
red regions indicating the ground truth anomaly intervals.

Fig. 6 focuses on the UCSD Ped2 dataset, specifically test videos #2 
and #3. The proposed model demonstrates robust anomaly detection, 
characterized by a sharp and immediate decline in the normality score at 
the onset of the anomaly in test video #2, maintaining a low score 
throughout the anomaly interval. This behavior signifies high sensitivity 
and specificity, indicating effective temporal modeling and feature 
extraction capabilities. In test video #3, the model exhibits a significant 
increase in normality score toward the end of the sequence, showcasing 
its ability to adapt to varying anomaly types and providing strong 
temporal consistency. These clear patterns of response demonstrate the 
model’s reliability in distinguishing between normal and abnormal 
events. In contrast, the AMMC, HF², and MNAD models display more 
variability in their normality scores during the anomaly intervals. 
AMMC shows moderate fluctuation, indicating less stable anomaly 
detection and potential susceptibility to noise, which could lead to 
higher false positive rates. HF² and MNAD exhibit even greater fluctu
ations, showing difficulties in maintaining consistent detection accu
racy. These fluctuations imply that HF² and

MNAD may have limitations in effectively capturing complex tem
poral dependencies or differentiating subtle anomalies from normal 
behavior, potentially compromising their performance in real-world 
scenarios.

Fig. 7 extends the analysis to the CUHK Avenue dataset, examining 
test videos #4 and #12. The proposed method outperforms the others 
again, demonstrating precise anomaly detection. In test video #4, the 
model maintains high normality scores during normal frames and shows 
a sharp decline during the anomaly interval, quickly returning to high 
scores post-anomaly. This consistent behavior underscores the model’s 
robustness in anomaly detection and quick recovery, demonstrating 
effective handling of spatial and temporal features. In test video #12, 
characterized by multiple anomalies, the proposed method accurately 
identifies each anomaly, with distinct drops in normality score, 
reflecting its ability to handle complex anomaly patterns and maintain 
detection reliability under varied conditions.

AMMC, HF², and MNAD, however, exhibit less consistent perfor
mance in Fig. 7. AMMC displays irregular dips in normality score even 
outside designated anomaly intervals, pointing to potential false posi
tives. HF² and MNAD show significant variability, particularly in test 
video #12, where their normality scores fluctuate considerably, indi
cating instability and less effective anomaly detection. This variability 
may result from inadequate temporal modeling, feature extraction, and 
generalization capabilities, which are crucial for handling diverse 
anomaly scenarios [1,2,40].

4.3. Qualitative results

Fig. 8 and 9 present the anomaly detection capabilities of the pro
posed method for the ShanghaiTech Campus [8] and CUHK Avenue [39] 
datasets, respectively. These figures demonstrate how the method pro
cesses video frames to detect anomalies by showing the progression from 
raw input frames through various stages of feature extraction to the final 
anomaly-highlighted output. The first column of each figure displays 
raw video frames, establishing a baseline for normal behavior. The 
subsequent columns show: (1) reconstruction results from the Euclidean 
autoencoder, (2) the reconstruction error between the ground truth 
frames and the Euclidean autoencoder’s output, (3) reconstruction re
sults from the CCM autoencoder, (4) the reconstruction error between 
the ground truth frames and the CCM autoencoder’s output, and (5) the 
element-wise multiplication of the Euclidean branch’s reconstruction 
error (3rd column) and the CCM branchr’s reconstruction error (5th 
column). This method allows the model to effectively filter out irrele
vant information and concentrate on potential anomalies. The final 
column highlights the areas of high activation, indicating detected 
anomalies. The model successfully identifies significant deviations, such 
as unusual movements or behaviors, emphasizing its capability to detect 
both subtle and overt anomalies. This indicates that the model’s feature 
extraction and attention mechanisms are well-tuned for distinguishing 
abnormal activities [23,26]. The consistent performance across both 
datasets underscores the robustness and adaptability of the proposed 
model. By effectively isolating and emphasizing anomalous features, the 
model demonstrates strong potential for real-world applications in sur
veillance and monitoring systems.

4.4. Ablation study

The ablation study examines the effect of memory size on the per
formance of the proposed method across three datasets. The results as 
shown in Table 4 indicate that the model’s performance is relatively 

Fig. 5. AUC scores of various unsupervised video anomaly detection methods across different datasets.
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robust to the changes in memory size, particularly for the UCSD Ped2 
and CUHK Avenue datasets. For the UCSD Ped2 dataset, performance 
remains consistently high, around 99.1 % to 99.3 %, across all tested 
memory sizes (10, 20, 30, and 50). This stability implies that the model 
is highly effective at anomaly detection, irrespective of the memory size. 
The CUHK Avenue dataset shows slight variations in performance, with 
accuracy ranging from 92.1 % to 92.8 %. While there is a minor dip in 
performance at a memory size of 20, the model quickly recovers, indi
cating that memory size has only a limited impact on its detection 
capability.

On the other hand, the results on ShanghaiTech Campus dataset 
demonstrate more noticeable sensitivity to the changes in memory size, 
with performance varying between 79.7 % and 80.5 %. The lower 
overall performance compared to the other two datasets implies that the 
ShanghaiTech Campus presents more challenging anomaly detection 
scenarios, potentially due to more complex or subtle anomalies. For this 
dataset the performance dip at a memory size of 20 indicates that 

memory configuration might play a more significant role in detection 
performance of the model [1,2,26].

Overall, this paper reveals that while the proposed method is 
generally robust to variations in memory size, selecting an optimal 
memory size such as 50, could help maintain or slightly enhance the 
performance. This flexibility and robustness make the model suitable for 
real-world applications where memory constraints may vary, ensuring 
consistently high anomaly detection performance.

For UCSD Ped2, the combined method demonstrates a significant 
advantage over both Euclidean-only and CCM-only methods, as shown 
in Table 5. While the CCM-only model is more effective at capturing 
temporal irregularities, the fusion of spatial and temporal features 
provides a substantial performance boost. This integrated method in
creases sensitivity to subtle anomalies, particularly benefiting from the 
simpler anomaly types present in this dataset. In the case of CUHK 
Avenue, the CCM-only method outperforms its Euclidean counterpart, 
further confirming the importance of modeling temporal dynamics in 

Fig. 6. Comparative analysis of anomaly detection models on UCSD Ped2.
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datasets where motion-based anomalies dominate, as reflected in 
Table 5. Nevertheless, the combined method, utilizing both spatial and 
temporal features, delivers the best results. By leveraging complemen
tary information from both domains, the fusion leads to a more robust 
and accurate anomaly detection performance. For the more challenging 
ShanghaiTech Campus dataset, which involves complex and diverse 
anomaly types, the CCM-only method again surpasses the Euclidean- 
only model, underscoring the necessity of temporal modeling. Howev
er, as demonstrated in Table 5, the highest performance is achieved 
through the combined use of both spatial and temporal features. This 
dual-geometrical method efficiently handles the intricate spatiotem
poral patterns in the dataset, resulting in superior detection accuracy 
across a wide range of scenarios.

4.5. Inference time analysis

Table 6 presents a comparative analysis of frame-per-second (FPS) 

performance with state-of-the-art methods for video anomaly detection. 
The methods are categorized into reconstruction-based and frame 
prediction-based approaches. In general, frame prediction methods 
demonstrate faster inference speeds compared to their reconstruction- 
based counterparts.

Reconstruction-based methods are relatively slower, with MAAM 
achieving 51 FPS, MemAE operating at 38 FPS, and StackRNN at just 10 
FPS. In contrast, frame prediction methods exhibit substantially 
improved efficiency—MSN–Net and SAFA reach 78 FPS and 76 FPS 
respectively, while TransMem and MAND achieve 72 FPS and 65 FPS. 
FastAno++ and Dual GroupGAN also report faster performance with 60 
FPS and 57 FPS respectively.

The proposed method attains 64 FPS, positioning it as a competitive 
solution among fast-performing frame prediction methods. Its inference 
speed is comparable to MAND (65 FPS) and TransMem (72 FPS), and 
only slightly behind the fastest models like MSN–Net and SAFA. 
Furthermore, it significantly outperforms slower baselines such as 

Fig. 7. Comparative analysis of anomaly detection models on CUHK Avenue.
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Unmasking (20 FPS) and HF²-VAD (10 FPS).
In addition to runtime efficiency, the proposed method also achieves 

strong detection performance, reporting 92.8 % on the Avenue dataset 
and 80.5 % on the ShanghaiTech dataset. These results highlight its 
ability to strike a balance between speed and accuracy, making it a 
suitable candidate for real-time video anomaly detection applications.

4.6. Generalization ability on large-scale dataset

To evaluate the generalization capability of the proposed method 
beyond conventional benchmarks, we conduct additional experiments 
on the NWPU Campus dataset [44] which is the largest dataset for un
supervised video anomaly detection to date. This dataset contains 43 
distinct scenes, 28 types of anomalous events, and approximately 1.47 
million frames, making it over 4.6 times larger in frame count and over 3 
times richer in scene diversity compared to the ShanghaiTech Campus 
dataset (317,398 frames, 13 scenes).

Notably, NWPU Campus is the only dataset that incorporates scene- 
dependent anomalies, where certain events are abnormal in specific 

contexts but not in others—for instance, cycling on a footpath is 
anomalous only in certain scenes. In contrast, datasets like Shang
haiTech treat object appearance (e.g., a bicycle) as anomalous regardless 
of context, making early prediction infeasible. NWPU also supports 
anomaly anticipation by ensuring observable build-up to anomalous 
events.

As shown in Table 7, our method achieves an AUC of 68.2 % on 
NWPU Campus, outperforming both reconstruction-based (e.g., 
MemAE: 61.9 %) and prediction-based methods (e.g., AMMC: 64.5 %). 
This demonstrates that our method not only generalizes well to large- 
scale, diverse environments, but is also robust to complex and scene- 
dependent anomalies. These results strongly support the model’s scal
ability and real-world applicability.

5. Concluding remarks

In this paper, we propose a two-stream autoencoder model to address 
the limitations of single model trained exclusively in Euclidean space. 
Our method integrates learning in both Euclidean and CCM spaces, 

Fig. 8. Visualization of the ouputs on the Shanghaitech Campus dataset.
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which leverages CCM space learning effectively captures nonlinear 
temporal features in video data, extracting the temporal structures be
tween consecutive frames. This results in higher discrepancy of original 
and reconstructed images for anomalies, while the Euclidean autoen
coder minimizes the discrepancy for normal data. By amplifying the 
discrepancy associated with anomalies with distance measurement in 
CCM space, our method distinctly separates normal instances from 
abnormal ones. Comparative study with several unsupervised learning- 
based autoencoder models confirms the superior performance of the 
proposed method, and deeper analysis shows that the CCM autoencoder 
captures nonlinear temporal features effectively and amplifies the 
discrepancy significantly. Its ability to reliably detect and highlight 
anomalies makes it a valuable tool for environments where accurate 
anomaly detection is essential.

However, the performance of the proposed method on large-scale 
and diverse datasets, such as ShanghaiTech Campus and NWPU 
Campus, shows some limitations. Specifically, the proposed method 
struggles with context-dependent anomalies, the events that are 
considered abnormal only in specific scenarios. This issue highlights the 
need for more sophisticated scene-aware modeling and the 

Fig. 9. Visualization of the outputs on the Avenue dataset.

Table 4 
Performance impact of varying memory sizes.

Memory Size UCSD Ped2 CUHK Avenue ShanghaiTech Campus

10 99.3 92.8 80.5
20 99.3 92.1 79.7
30 99.1 92.4 80.1
50 99.2 92.2 80.2

Table 5 
Ablation study comparing the performance (AUC %) of Euclidean-only, CCM- 
only, and the combined Euclidean-CCM methods across three benchmark 
datasets (UCSD Ped2, CUHK Avenue, ShanghaiTech Campus). The combined 
method consistently yields the highest performance, demonstrating the benefit 
of fusing spatial and temporal features.

Dataset Euclidean-only CCM-only Combined

UCSD Ped2 95.2 96.1 99.3
CUHK Avenue 87.5 89.0 92.8
ShanghaiTech Campus 75.2 77.5 80.5
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incorporation of contextual understanding to improve the model’s 
generalization capabilities. Therefore, equipping the model with the 
ability to distinguish between scene-specific normal and abnormal be
haviors becomes essential for deployment in complex real-world envi
ronments, where the nature of anomalies can vary across different 
contexts significantly.

In the future, we intend to delve into the development and applica
tion of more sophisticated and advanced architectural methods, such as 
transformer-based models and their variants, to significantly enhance 
the model’s proficiency in capturing intricate and long-range temporal 
dependencies in video data. By leveraging the attention mechanisms 
inherent in transformer architectures, we can achieve a more nuanced 
understanding of temporal patterns and contextual relationships, 
thereby improving the overall anomaly detection performance. Addi
tionally, we plan to integrate semi-supervised learning techniques, 
which would allow the model to effectively leverage both labeled and 
unlabeled data. This method is expected to facilitate the model’s 
adaptability to new and previously unseen types of anomalies, even 
when only a limited amount of labeled data is available. We anticipate 
that these improvements will not only boost the model’s robustness and 
generalization capabilities but also enable it to operate more effectively 
in dynamic and evolving real-world environments where the nature of 
anomalies can vary over time.
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for few-shot classification, in: AAAI Conf. on Artificial Intelligence 36, 2022, 
pp. 1926–1934.
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